We study the \textit{multinomial logit} (MNL) contextual bandit problem for sequential assortment selection. Although most existing research assumes utility functions to be linear in item features, this linearity assumption restricts the modeling of intricate interactions between items and user preferences. A recent work~\citep{zhang2024contextual} has investigated general utility function classes, yet its method faces fundamental trade-offs between computational tractability and statistical efficiency. To address this limitation, we propose a computationally efficient algorithm for MNL contextual bandits leveraging the upper confidence bound principle, specifically designed for non-linear parametric utility functions, including those modeled by neural networks. Under a realizability assumption and a mild geometric condition on the utility function class, our algorithm achieves a regret bound of