Effective jamming in electronic warfare depends on proper jamming technique selection and jamming parameter estimation. For this purpose, this paper proposes a new method of estimating jamming parameters using Gaussian kernel function networks. In the proposed approach, a new method of determining the optimal structure and parameters of Gaussian kernel function networks is proposed. As a result, the proposed approach estimates the jamming parameters in a reliable manner and outperforms other methods such as the DNN(Deep Neural Network) and SVM(Support Vector Machine) estimation models.